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SUMMARY

This work investigates the effects of a force induced by the labyrinth

seal on the stability of rotor systems and the factors of the seal which affect

the stability. In the analysis, it is assumed that the fluid in the seal is

steady and that the rotor is set vertically in order to avoid the effects of

gravity force. The force induced by the seal is expressed in terms proportion-

al to the velocity and displacement of the rotor and is deduced to that expres-

sion for the oil-film force in journal bearings. That force is taken into ac-

count in the equations of motion; then the stability of the system is discussed

by energy concept.

The force induced by the labyrinth seal always makes the rotor system un-

stable, and the tendency is remarkable when seal leakages are small. The reso-

nance point of the rotor system is also affected by the labyrinth seal; that is,

the resonance point of the rotor system is removed by the seal leakages. The

flow pattern in the labyrinth seal was investigated experimentally, and the

force induced by the labyrinth seal was measured by using a water-tunnel experi-

mental system which was designed to measure the labyrinth seal force by using

the similarity between gas and liquid flow theory.

INTRODUCTION

After the oil shock, high-performance turbines and compressors are required

in order to save energy. For this purpose, designers would like to minimize leak-

age from labyrinth seals, so they design the clearances of the labyrinth seal

to be small. However, if the clearances are small, self-excited rotor vibra-

tions are caused by the flow forces of the working fluid. The origins of the

exciting forces are at present only partially known as a steam whirl excitation.

So it is not enough to evaluate these forces in order to design the labyrinth

seals for compressors and turbines. Thus the analysis of labyrinth seals and

the materials for design are strongly required by the designer of turbines and

compressors. This paper is devoted to a basic analysis of the fluid force due

to labyrinth seals.

First, the fundamental equation proposed by Kostyuk (refs. 1,2) is extended

in order to consider the effect of the variation of gland cross section. For

the analysis, the fundamental equation is rewritten to ordinary differential

equations by using the finite difference method. Then spring and damping co-

efficients of the labyrinth seals are calculated for selected models from the

fundamental equation and perturbation from the steady state. The flow rate and

pressure, etc., in the steady state are also calculated. Then the stability of
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the rotor system is discussed in terms of these coefficients by using the con-
cept of energy. Furthermore, experiments were executed to observe the flow pat-
tern in the gland and to study the characteristics of the flow-induced forces
in the labyrinth seals.

FUNDAMENTALEQUATIONFORGASFLOWIN LABYRINTHSEAL

For the derivation of the equations, the following conditions are assumed;

(i) Fluid in the labyrinth seal is assumedto be gas, and its behavior is
assumedto be ideal.

(2) Temperature of the fluid in the labyrinth seal is assumedto be con-
stant.

(3) Cross-sectional area of the seal gland is assumedto be constant in
spite of the deflection of rotor, and only the time derivative of the cross-
sectional area is considered.

(4) Changeof flow state in the gland is assumedto be isentropic.

Thus from the illustrations of figure 1 the fundamental equations with respect
to the flow rate and pressure are as follows;

a(Ai) + #a(P_ c_)
at 8_

+ ( _.,- _)= o (1)

+

8P_
8(P_C_) +( _.,c_- _c_-,)+_'u'- _"u"=- #_T_

8_
(2)

_' = _-_Cp_CB_ (3)

<'=½ - f

_RTpf-
/q 8_

(4)

(5)

PL=,P_'R T (6)

(7)
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Equations (i) to (7) are nonlinear partial differential equations; so for the
analysis they must be rewritten to linear partial differential equations by
using the perturbation terms from the steady state. Therefore, pressure, axial
flow rate, and peripheral velocity in the steady state should be obtained.

ANALYSISOFFLOWIN STEADYSTATE

As the flow in the seal is steady, all state variables are constant; there-
fore time derivatives and space derivatives of the state variables are zero.
Thus the fundamental equations becomeas follows:

=0

@_,,C_- _C;-, + _'U'- _"V'= 0 (9)

From these equations, state variables in the equilibrium condition are obtained

by using the iterative method as shown in figure 2. For this calculation, the

pressure recovery factor np is

where

A=- (i0)

and H is the angle between the rotating axis and the flow direction passing

through the seal strip.

The steady-state flow rate is given as

_,_= _-_L 2_/E__1 "P (Ii)

LINEARIZATION OF FUNDAMENTAL EQUATION

For the linearization of the fundamental equation, the perturbations of

pressure, peripheral velocity, and flow rate from those of the steady state are
introduced as

P_,= P_(1 +._ _,) (12)
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(13)

(14)

where P,i, C,i, and q*i are pressure, peripheral velocity, and axial flow
rate of steady state in the i th gland and _i, qi, and _i are the nondimen-
sional perturbation terms of pressure, peripheral velocity, and axial flow rate.

where
ance.

The cross-sectional area in the i th gland is represented as

(15)

hi and 6i are the height of the gland and the radial labyrinth clear-

By denoting the displacement of the center of the rotor (x,y) as

the area of the i th chambersection is obtained as

(16)

(17)

Becausethe change of state in the gland is isentropic change, the following
relation is obtained:

P_ P_ _-
p#

Therefore

8s (18)

From the above equations, the following linear equations are obtained:
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_R 2 z z_ T,_ ,;',,:p,__, _-v +
P,t, _,

_RTp(.zor',_., p_ p z
2P_, ( '[- _*')

,_RT_2_ 2 2

- __ (P;_-,- p;_) = _RT_' {;,,_.,_'m.t- r,;_,,)

(19)

X tR_

2C._ ( _L + ,_,_i.) ¢_ -
+ R_

+
# RT.'<' #,_LP,_

• )

:;LULC,
+

C,_ _RT '

_c'u£'(_.-c,)' '_
/2C_,

I

+ ( <u(c, - :_'uL'( c,- u)+

u_ _.- C,

o_RTA<_or_., P_.

_ R TA'_,_ 'P,i,-1

+
2 2C,

P_ {.-I

p,_ &_ p,_

(2O)
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where

• a(.) , a(.)
(.):-- (.):-

at ' @_o

Equations (19) and (20) are rewritten in the matrix form as

]I-6 +VU'+BI3 = ._ (r, cos_t cos_ + r_s,n_tsin_' )

+ _]( r,sin Qt cos_° --r,cosQt sin'Y ) (21)

where T, V, and B are (2k - i) x (2k- i) matrix and u, f and

(2k - i) row vectors and u is represented as

U _= L _,, _l,, _,'l,, .... , _-_, rt_-,, Jj

g are

ANALYSIS BY FINITE DIFFERENCE METHOD

Multiplying equation (21) by T-I yields

]I 6 + D _'+© U = $ (r,_s Qt c_o. r2sinetsin? )

+ Ir(r, slnf#tcssso - r2ces_t sln_o)

where

lm= T-'_ , Q = T-'B
$ = T"f , m = T-'_I

= unit matrix

(22)

By dividing the circumferential space of the rotor into n elements as shown

in figure 3, the following finite difference equation is obtained about the jth

element:

Ii 6_ +IPCU_,,-ILL__,) + _)ILt_ = ¢(jc_sQt * bj sLnQt

+ C_ sln_2t - cl[_ cos_t (23)

where
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P= DI2_ ,

£_ = IF r, cos _,i , d_ : 1["r_ s_n _ ,
"l"

U,_ = L U,_t U2j, ..... , uq, .... , u_-l_, ! _j
T

0,_ = L o.,i, a_, ..... , aq, ..... , a___, 0 j

_'_= L b,/_, b_, ..... , b_, ..... , b_,-;_, 0 j

1"

When the boundary conditions are set as uj(_j, t) = uj($j + 2_, t), equation
(23) is reduced for the overall system to

(24)

where x, a, b, c, d are n(2k- I) row vectors and A is n(2k-l) x n(2k-I)

matrix

The solution of equation (24) is obtained in matrix form as

-- e -/A'_@_. +J0 _

Sot -($,- s)/A+ e

-(_-s)/A I_" -(_-5)_e a o_ _s_ts + e Ib.a_ ,,Q s ds
ju

Jg -(_>-a)/A,_ f2 s ds - 0 e dl c_ 72 s _s ¢_)

If the rotor is rotating at the steady state, the perturbation terms are equal

to zero; so the initial condition for analysis becomes

-- 0 (26)

By using this condition, equation (25) becomes

% =IE r, _._,.,c2t_+ IFF2._,f2t,, o(-r,.,_..,_Y2_ )
+ IH rz,.f2 c,_,.f2b (27)

where
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_(I+ _2)' b}

=!{_(_ + /A' 1

__{½ _,-,I (If+ ,_z dG = r,,f2

I IA2 )-_
I {_ __ (][ +

_2(I + _-:)"/AC}

_(I + ,..Q---_-IAd_I

By using the nondimensional variable of pressure, fluid forces acting on the

rotor are given as

&-1 j,'0_/I_

-- )7-P,L E ._j c__ (,_- 1)3% i,,1 ,i -i TL,

F_ =- Rs P,L_,_)-A _ d9p
£:_

" < 0--- 27r-"Rs _P'L"Ft.L.-, _ _t,i_'': 27C_(_-1
(28)

is nondimensional variable of the ith gland and the jth element.
where _ij
By applying the relation

, n,ec ..e =

to equation (28), the flow-induced force due to the labyrinth seal is obtained

as

where

(29)

(30)
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L-1 J: 1

i,:l J:1

_Rs_ 1 1'
2 'ft. '_P,i. _IIH_j

"_,_z 2_Rs,_ _ IE_ --_--(_- i))

2?_Rs_ _-_
_ P_ _. _j,4_,C 2,,_-

(31)

(32)

(33)

(34)

These coefficients are the spring constants and damping coefficients for the

gas flow through the labyrinth seal when the rotor moves parallel to the cas-

ing axis.

NUMERICAL EXAMPLE

The labyrinth seal having three teeth is used as a numerical model, and

the seal is divided into 24 elements for the finite difference method. Details

of the labyrinth seal, the rotor, and the fluid are shown in tables 1 to 3. In

table i, models A to C investigate the effect of seal clearance, models D to F

investigate the effect of precession, and models G and H investigate the effect

of divergence and convergence seals.

For the calculation, the following values are used:

Flow coefficient = 0.7

X = 64/Re for Re < 1200

= 0.3164Re -0"25 for Re > 1200
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where Re is Reynolds number.

Table 4 shows the pressure and flow rate in the steady state. Figures 4

to 6 show the spring constants and damping coefficients for each model. Be-

cause the rotor axis is coincident with the casing axis for the calculation,

the following relations are obtained:

Kxx = Kyy,

Cxx = Cyy,

Kxy = -Kxy

Cxy = -Cyx

(35)

Figure 4 shows the spring constants and damping constants for models A, B, and

C in order to investigate the effect of clearance. From figure 4(b), principal

diagonal terms of the damping coefficients are constant for the variation of

rotating speed; on the other hand, the cross terms of the damping coefficient

vary with rotating speed. Decreasing the clearance makes the coefficients

large. Figure 5 shows the effect of precession, from which it is known that

the diagonal terms of both the spring and damping coefficients are constant for

the variation of rotating speed but that the cross terms of both the spring and

damping coefficients are strongly dependent on rotating speed. Figure 6 shows

the different effects of convergence and divergence seals. From these figures

it becomes clear that the cross terms of the spring coefficients and the damp-

ing coefficients are quantitatively different.

ENERGETIC APPROACH TO STABILITY

In this section, the energy, eigenvalue, and phase difference between two

modes are derived for a two-degree-of-freedom system, and the result is applied

to the stability analysis of a rotor having a labyrinth seal. The general equa-

tion of motion is represented in matrix form as

where

,,o B= K=
, mz2 , b2, b22 , k2, kz2

As equation (36) has two eigenvalues, we consider the energy for each mode by

assuming the periodical vibrational mode, that is, by neglecting the real part

of the eigenvalue. Then the vibrational energy for one cycle for each mode is

written as

(37)
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The first term of expression (37) is kinetic energy, the second is dissipative

energy, and the third is potential energy. The energies of each term for one

cycle (one period = T) are obtained as

o

(38)

I
o

(b,,_,2,b,2£, 2 +2Bi,i_)_t =- E, + E2 (39)

where

B = _(b,2÷b2,)

I
o o

(40)

where

t
k -- 2 ( k,, - k,,)

Therefore the total energy of the system for one cycle becomes

where

E = E, + EZ4- E 3 , (41)

F-,-- _uJJ (b,, U,z + b,, U_ )

E2= _. 2 _ _. u, c_s ( #, - ¢,) (42)
Ob

_= -2Ak U, U2 sin(#,- _z)

u i is the eigenvector and (#I - _2) is the phase angle between the first and

second modes. By using this result, the stability of the system may be stated

from the energy point of view as follows:
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(i) If E > 0, the energy of the system is absorbed, and thus the system
is stable.

(2) If E < 0, the energy of the system is dissipative, and thus the sys-
tem is unstable.

In expression (42), Ei is the energy obtained by diagonal elements of the

damping coefficient. It is always positive; so if the damping coefficient is

positive, this term always makes the system stable. Also E 2 is the energy

obtained by cross elements of the damping coefficient, and its sign is depen-

dent on the phase angle between _I and _2 o Finally E 3 is the energy ob-

tained by cross elements of (k12 - k21) and the phase angle between _i and _2"

From the above discussion, cross elements of the stiffness and the diagonal

elements of the damping make the system unstable, and the cross elements of the

damping do not affect the stability in this case.

EXPERIMENTS

The experimental apparatus shown in figure 7 was used to observe the flow

pattern in the labyrinth seal and to investigate the dynamic behavior of the

labyrinth seal. The rotor is driven by a variable-speed motor system, and its

bearing (with eccentricity) is also driven by another variable-speed motor in

order to obtain an arbitrary whirling speed and spinning speed. A two-stage

labyrinth seal (straight type) is set up at the rotor, whose depth of gland,

pitch, and mean clearance are 18.2, 30.0, and 1.8 millimeters, respectively.

Rotating speed of the rotor and shaft for whirling drive are 84 337 and

93 460 rpm, respectively. The casing is made from polymethyl-meta-acrylate in

order to show the flow state, and water is used for the working fluid.

Pressure in the shroud is measured by the semiconductor pressure gage, and

its signal is analyzed by a real-time analyzer. Figure 8 shows the flow pat-

tern in the shroud, where a continuous vortex in the circumferential direction

occurs in the fluid flow. The form is like a sinusoidal wave which is rotating

in the same direction as the rotor. Figures 9 and i0 show the dynamic pressure

(perturbation term) of the gland and the phase angle between deflection and the

pressure for forward and backward precession, respectively. From these figures

it is known that the dynamic pressure of the both cases is increased in propor-

tion to the increase of rotating speed but that the tendency of the phase angle

of both cases is the reverse.

MOTION PICTURE SUPPLEMENT

The 8-mm film was taken in order to observe the flow pattern in the gland

of the labyrinth seal, where a continuous vortex in circumferential direction

occurs. The vortex form is like a sinusoidal wave which is rotating in the

same direction as the rotor. Figure Ii shows the two different flow patterns.

The left side shows a conventional mathematical model of the flow pattern in the

gland. This model is usually used to derive the fundamental equation. The real

flow pattern is not similar to the model. In the gland the flow is composed of

vortex and expansion flow as shown by the right side of figure Ii.
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Thus the next subject we should approach is the mathematical derivation of
the fundamental equation considering the vortex in the gland.

CONCLUSIONS

The force induced by the labyrinth seal is solved by using the finite dif-
ference method, expressed in proportional terms to the velocity and displace-
ment of the rotor, and reduced to the expression of oil-film force of journal
bearings. Then the effect of the coefficients of the induced force on the
stability of the rotor system is discussed from the energy point of view. The
force induced by the labyrinth seal always makes the rotor system unstable, and
the tendency is remarkable when leakage of the seal is small. The flow pattern
in the labyrinth seal was investigated experimentally, and it is known that a
continuous vortex in the circumferential direction occurs in the fluid flow.
The form is like a sinusoidal wave which is rotating in the samedirection as
the rotor.

EDITORIALSUPPLEMENT

Reproduction of the film frame (fig. 8) was not very successful, so we
introduce figures 12 and 13 in an attempt to demonstrate the film supplement.
Figure 12 is a sketch of what appears in the film to be a spiral vortex. Fig-
ure 13 represents a possible sequenceof motions of the vortex center resulting
from the periodic behavior of the flow interface. Onemust also be aware of
the possible disturbance caused by the air bubbles in the flow field.

These instabilities appear to be linked with those noted in unpublished
work by Robert C. Hendricks and T. Trent Stetz of the NASALewis Research
Center, where a flow visualization study was carried out on a water table to
determine somecharacteristics of flows through sequential Borda-type inlets
(no rotation and no centerbody). In figure 14(a) the four lucite Borda models
were placed in such a way that they touched each other to form a continuous
channel. The inlet water depth was similar to the passage width. The injected
dye revealed that the flow through this configuration continued uninterrupted
after passing the vena-contracta. The models were then placed with spacings of
1/3 of the channel passage width (fig. 14(b)). The flow still continued in an
uninterrupted mannerafter the vena-contracta. The models were then placed
with spacings of 3/2 of the channel passage (fig. 14(c)). At this separation
distance part of the flow entered the cavities and slight oscillations were ob-
served. At a separation distance of 2-1/4 channel passagewidths a very strong
oscillation was observed (fig. 14(d)): The exhaust of one passagewould "fan"
the flow across the inlet of the subsequent Borda passage. These oscillations
weakenedwhen the separation distance was increased to 4 channel passage widths
(fig. 14(e)). A separation of 6 channel widths showedminor oscillations (fig.
14(f)). At distances beyond 16 channel widths the flow through each Borda pas-
sage appeared nearly independent of the preceding flow (fig. 14(g)).
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Figure 2. - Calculation procedure for steady state.
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Figure 4. - Coefficients of flow-induced force for models A to C.
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Figure 8. - Flow pattern in gland.
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Conventional mathematical model
Real flow pattern

Figure ii. - Sketch of flow patterns.
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Flow
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Figure 12. - Spiral vortex.
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Figure 13. - Possible interface and vortex motions
leading to a "spiral vortex."
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Flow

(a) Zero separation - jetting.
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-----[ ---1-
(b) D/3 Separation- jetting.

(c) 3D/2 Separation - oscillation.

(d) 9D/4 Separation, maximum-amplitude oscillation.
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I J / ' I

(e) 4D Separation, oscillation.

I != 6D

- I _--I
(f) 6D Separation, minor oscillations.

16D _ _

r

(g) 16D Separation, nearly independent of reservoir.

Figure 14. - Flow visualization of four sequential Borda-type inlets.

167




